KAZALO

301 Uvodnik  Iz najboljše preje v najlepše izdelke  Mojca Šubic

 

ZNANSTVENI ČLANKI

302 Vpliv postopka priprave koloidnih raztopin srebra na lastnosti vlaken iz polimlečnekisline •  Danijela Klemenčič, Petra Muha, Wioleta Klepacka, Brigita Tomšič, Andrej Demšar, Arun P. Aneja, Kristina Žagar in Barbara Simončič Izvleček in reference

Izvirni znanstveni članek
Prispelo
09-2013 • Sprejeto 11-2013

Korespondenčna avtorica:
prof. dr. Barbara Simončič
Tel.: +381 1 1 200 32 31
E-pošta: barbara.simoncic@ntf.uni-lj.si

 

Izvleček

Namen raziskave je bil proučiti vpliv postopka priprave koloidne raztopine srebra na lastnosti vlaken iz polimlečne kisline (vlakna PLA). Koloidni raztopini srebra sta bili pripravljeni v dveh topilih, in sicer v vodi in etanolu pri ustreznih pogojih, in naneseni na vlakna PLA po izčrpalnem postopku, da se doseže njihova protimikrobna aktivnost. Oblika, velikost in kemijska sestava srebrovih nanodelcev (Ag ND) v koloidnih raztopinah so bile določene s spektroskopijo UV-Vis ter presevno elektronsko mikroskopijo z energijsko-disperzijsko spektroskopijo rentgenskih žarkov (EDS). Morfološke lastnosti obdelanih vlaken so bile proučevane z vrstično elektronsko mikroskopijo, prisotnost Ag ND na njihovi površini pa potrjena z analizo EDS. Koncentracija Ag ND na obdelanih vlaknih je bila določena z masno spektroskopijo z induktivno sklopljeno plazmo. Protimikrobne lastnosti obdelanih vlaken PLA so bile proučene na podlagi meritev bakterijske redukcije za bakterijsko vrsto Escherichia coli po standardni metodi ASTM E 2149-01. Iz rezultatov raziskave je bilo razvidno, da so se tako v vodni kot etanolni koloidni raztopini oblikovali pretežno monomeri Ag ND, ki so bili krogelne oblike in katerih velikost ni presegla 15 nm. Na količino adsorbiranega Ag na vlaknih PLA je neposredno vplivalo uporabljeno topilo. Koncentracija Ag je bila večja na vlaknih, obdelanih v vodi, kot v etanolu. Nanos Ag ND iz obeh topil je zagotovil odlično protibakterijsko zaščito vlaken PLA. V nasprotju z vodo je obdelava vlaken v etanolu povzročila morfološke spremembe vlaken.

Ključne besede: koloidna raztopina srebra, srebrovi nanodelci, polimlečna kislina, vlakna PLA, morfološke lastnosti, protimikrobna aktivnost

 

Reference

  1. New millennium fibers. Edited by Tatsuya Hongu, Glyn O. Phillips, Machiko Takigami. Boca Raton : Woodhead Publishing Limited, 2005, 299. http://dx.doi.org/10.1533/9781845690793 
  2. OKSMAN, Kristiina, SELIN, Johan-Fredrik. Natural fibers, plastics and composites. Edited by Frederick T. Wallenberger and Norman Weston. ZDA : Kluwer Academic Publishers, 2004, 149–165.
  3. AVINC, Ozan, KHODDAMI, Akbar. Overview of poly(lactic acid) (PLA) fibre. Part I: production, properties, performance, environmental impact, and end-use applications of poly(lactic acid) fibres. Fibre Chemistry, 2009, 41(6), 391–401. http://dx.doi.org/10.1007/s10692-010-9213-z
  4. GUPTA, Bhuvanesh, REVAGADE, Nilesh, HILBORN, Jöns. Poly(lactic acid) fiber: An overview. Progress in Polymer Science, 2007, 32(4), 455-482. http://dx.doi.org/10.1016/j.progpolymsci.2007.01.005
  5. JAMSHIDIAN, Majid, TEHRANY, Elmira Arab, IMRAN, Muhammad, JACQUOT, Muriel, DESORBY, Stéphane. Poly-lactic acid: production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety, 2010, 9(5), 552-571. http://dx.doi.org/10.1111/j.1541-4337.2010.00126.x
  6. NAMPOOTHIRI, Madhavan K., NAIR, Nimisha Rajendran, JOHN, Rojan Pappy. An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 2010, 101(22), 8493-8501. http://dx.doi.org/10.1016/j.biortech.2010.05.092
  7. Biorazgradnja tekstilnih vlaken in njihova protimikrobna zaščita. Uredili SIMONČIČ, Barbara, TOMŠIČ, Brigita. 1. izdaja. Ljubljana : Univerza v Ljubljani, Naravoslovnotehniška fakulteta, Oddelek za tekstilstvo, 2010.
  8. Product and Applications [online], [citirano 15. 7. 2013]. <http://www.natureworksllc.com/Product-and-Applications>.
  9. RAI, Mahendra, YADAV, Alka, GADE, Aniket. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 2009, 27(1), 76-83. http://dx.doi.org/10.1016/j.biotechadv.2008.09.002
  10. MORONES, Jose Ruben, ELECHIGUERRA, Jose Luis, CAMACHO, Alejandra, HOLT, Katherine, KOURI, Juan B., RAMÍREZ, Jose Tapia, YACAMAN, Miguel Jose. The bactericidal effect of silver nanoparticles. Nanotechnology, 2005, 16(10), 2346–2353. http://dx.doi.org/10.1088/0957-4484/16/10/059
  11. LOK, Chun-Nam, HO, Chi-Ming, CHEN, Rong, HE, Qing-Yu, YU, Wing-Yiu, SUN, Hongzhe, TAM, Paul Kwong-Hang, CHIU, Jen-Fu, CHE, Chi-Ming. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research, 2006, 5(4), 916–924. http://dx.doi.org/10.1007/s11274-009-0211-3
  12. CHOI, Okkyoung, DENG, Kathy Kanjun, KIM, Nam-Jung, ROSS, Louis Jr., SURAMPALLI, Rao Y., HU, Zhiqiang. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Research, 2008, 42(12), 3066–3074. http://dx.doi.org/10.1016/j.watres.2008.02.021
  13. CHEN, X., SCHLUESENER, HJ. Nanosilver: A nanoproduct in medical application. Toxicology Letters, 2008, 176(1), 1-12. http://dx.doi.org/10.1016/j.toxlet.2007.10.004
  14. PETICA, Aurora, GAVRILIU, Ştefan, LUNGU, M., BURUNTEA, Nicoleta, PANZARU, Corina. Colloidal silver solutions with antimicrobial properties. Materials Science and Engineering B, 2008, 152(1–3), 22-27. http://dx.doi.org/10.1016/j.mseb.2008.06.021
  15. TOMŠIČ, Brigita, SIMONČIČ, Barbara, OREL, Boris, ŽERJAV, Metka, SCHROERS, Hand, SIMONČIČ, Andrej, SAMARDŽIJA, Zoran. Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric. Carbohydrate Polymers, 2009, 75(4), 618–626. http://dx.doi.org/10.1016/j.carbpol.2008.09.013
  16. KLEMENČIČ, Danijela, SIMONČIČ, Barbara, TOMŠIČ, Brigita, OREL, Boris. Biodegradation of silver functionalised cellulose fibres. Carbohydrate Polymers, 2010, 80(2), 426–435. http://dx.doi.org/10.1016/j.carbpol.2009.11.049
  17. KLEMENČIČ, Danijela, TOMŠIČ, Brigita, KOVAČ, Franci, SIMONČIČ, Barbara. Antimicrobial cotton fibres prepared by in situ synthesis of AgCl into a silica matrix. Cellulose, 2012, 19(5), 1715-1729. http://dx.doi.org/10.1007/s10570-012-9735-z
  18. KLEMENČIČ, Danijela, TOMŠIČ, Brigita, KOVAČ, Franci, ŽERJAV, Metka, SIMONČIČ, Andrej, SIMONČIČ, Barbara. Antimicrobial wool, polyester and a wool/polyester blend created by silver particles embedded in a silica matrix. Colloids and Surfaces B: Biointerfaces, 2013, 111(1 November), 517–522. http://dx.doi.org/10.1016/j.colsurfb.2013.06.044
  19. GORJANC, Marija, KOVAČ, Franci, GORENŠEK, Marija. The influence of vat dyeing on the adsorption of synthesized colloidal silver onto cotton fabrics. Textile Research Journal, 2012, 82(1), 62–69. http://dx.doi.org/10.1177/0040517511420754
  20. ILIĆ, Vesna, ŠAPONJIĆ, Zoran, VODNIK, Vesna, POTKONJAK, Branislav, JOVANČIĆ, Petar, NEDELJKOVIĆ, Jovan, RADETIĆ, Maja. The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with Ag nanoparticles. Carbohydrate Polymers, 2009, 78(3), 564–569. http://dx.doi.org/10.1016/j.carbpol.2009.05.015
  21. LEE, Hoon Joo, JEONG, Sung Hoon. Bacteriostasis and skin innoxiousness of nanosize silver colloids on textile fabrics. Textile Research Journal, 2005, 75(7), 551–556. http://dx.doi.org/10.1177/0040517505053952
  22. AGARWAL, Ankit, WEIS, Tahlia L., SCHURR, Michael J., FAITH, Nancy G., CZUPRYNSKI, Charles J., McANULTY, Jonathan F., MURPHY, Christopher J., ABBOTT, Nicholas L. Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells. Biomaterials, 2010, 31(4), 680–690. http://dx.doi.org/10.1016/j.biomaterials.2009.09.092
  23. Silver in healthcare: Its antimicrobial efficacy and safety in use. Edited by Alan B. G. Lansdown. Cambridge : The Royal Society of Chemistry, 2010, 280.
  24. YOU, Chuangang, HAN, Chunmao, WANG, Xingang, ZHENG, Yurong, LI, Qiyin, HU, Xinlei, SUN, Huafeng. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Molecular Biology Reports, 2012, 39(9), 9193–9201. http://dx.doi.org/10.1007/s11033-012-1792-8
  25. MIJNENDONCKX, Kristel, LEYS, Natalie, MAHILLON, Jacques, SILVER, Simon, VAN HOUDT, Rob. Antimicrobial silver: uses, toxicity and potential for resistance. Biometals, 2013, 26(4), 609–621. http://dx.doi.org/10.1007/s10534-013-9645-z
  26. CHERNOUSOVA, Svitlana, EPPLE, Matthias. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angewandte Reviews International Edition, 2013, 52(6), 1636–1653. http://dx.doi.org/10.1002/anie.201205923
  27. SUPRAKAS, Sinha Ray. Polylactide-based bionanocomposites: A promising class of hybrid materials. Accounts of chemical research, 2012, 45(10), 1710–1720. http://dx.doi.org/10.1021/ar3000376
  28. FORTUNATI, E., ARMENTANO, I., IANNONI, A., BARBALE, M., ZACCHEO, S., SCAVONE, M., VISAI, L., KENNY, JM. New multifunctional poly(lactide acid) composites: mechanical, antibacterial, and degradation properties. Journal of Applied Polymer Science, 2012, 124(1), 87–89, http://dx.doi.org/10.1002/app.35039
  29. ARMENTANO, I., DOTTORI, M., FORTUNATI. E., MATTIOLI, S., KENNY, J. M. Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polymer Degradation and Stability, 2010, 95(11), 2126–2146. http://dx.doi.org/10.1016/j.polymdegradstab.2010.06.007
  30. TOLAYMAT, Thabet M, El BADAWY, Amro M., GENAIDY, Ash, SCHECKEL, Kirk G., LUXTON, Todd P., SUIDAN, Makram. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. Science of the Total Environment, 2010, 408(5), 999–1006. http://dx.doi.org/10.1016/j.scitotenv.2009.11.003
  31. TAN, Kim Seah, CHEONG, Kuan Yew. Advances of Ag, Cu, and Ag-Cu alloy nanoparticles synthesized via chemical reduction route. Journal of Nanoparticle Research, 2013, 15(4), 1537. http://dx.doi.org/10.1007/s11051-013-1537-1
  32. KRUTYAKOV, Yu A., KUDRINSKIY, AA., OLENIN, A. Yu, LISICHKIN, GV. Synthesis and properties of silver nanoparticles: advances and prospects. Russian Chemical Reviews, 2008, 77(3), 233-257. http://dx.doi.org/10.1070/RC2008v077n03ABEH003751
  33. TOMŠIČ, Brigita. Vpliv velikosti delcev srebra na baktericidno učinkovitost celuloznih vlaken. Tekstilec, 2009, 52(7–9), 181–194.
  34. MARTÍNEZ-CASTAÑÓN, G. A., NIÑO-MARTÍNEZ, N., MARTÍNEZ-GUTIERREZ, F., MARTÍNEZ-MENDOZA, J. R., RUIZ, Facundo. Synthesis and antibacterial activity of silver nanoparticles with different sizes. Journal of Nanoparticle Research, 2008, 10(8), 1343–1348. http://dx.doi.org/10.1007/s11051-008-9428-6
  35. PAL, Sukdeb, TAK, Yu Kyung, SONG, Joon Myong. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 2007, 73(6), 1712–1720. http://dx.doi.org/10.1128/AEM.02218-06
  36. LIU, Shen, ZHAO, Jingwen, RUAN, Hongjiang, WANG, Wei, WU, Tianyi, CUI, Wenguo, FAN, Cunyi. Antibacterial and anti-adhesion effects of the silver nanoparticles-loaded poly(L-lactide) fibrous membrane. Materials Science and Engineering C, 2013, 33(3), 1176–1182. http://dx.doi.org/10.1016/j.msec.2012.12.008
  37. LIU, Shen, LIU, Shenghe, LIU, Xudong, ZHAO, Jingwen, CUI, Wenguo, FAN, Cunyi. Antibacterial antiadhesion membranes from silver-nanoparticle-doped electrospun poly(L-lactide) nanofibers. Journal of Applied Polymer Science, 2013, 129(6), 3459–3465. http://dx.doi.org/10.1002/app.39099
  38. LI, Lin, LI, Yi, LI, Jiashen, YAO, Lei, MAK, Arthur F. T., KO, Frank, QIN, Ling. Antibacterial properties of nanosilver PLLA fibrous membranes. Journal of Nanomaterials, 2009, 2009, article ID 168041, 5 p. http://dx.doi.org/10.1155/2009/168041
  39. DASARI, Aravind, QUIRÓS, Jennifer, HERRERO, Berta, BOLTES, Karina, GARCÍA-CALVO, Eloy, ROSAL, Roberto. Antifouling membranes prepared by electrospinning polylactic acid containing biocidal nanoparticles. Journal of Membrane Science, 2012, 405–406, 134–140. http://dx.doi.org/10.1016/j.memsci.2012.02.060
  40. EREM, AD., OZCAN, G., EREM, HH. and SKRIFVARS, M. Antimicrobial activity of poly(L-lactide acid)/silver nanocomposite fibers. Textile Research Journal, 2013. http://dx.doi.org/10.1177/0040517513481875
  41. XU, Xiaoyi, YANG, Qingbiao, WANG, Yonghzi, YU, Haijun, CHEN, Xuesi, JING, Xiabin. Biodegradable electrospun poly(L-lactide) fibers containing antibacterial silver nanoparticles. European Polymer Journal, 2006, 42(9), 2081–2087. http://dx.doi.org/10.1016/j.eurpolymj.2006.03.032
  42. KIM, Eun Seon, KIM, Seong Hun, LEE, Chang Hwan. Electrospinning of polylactide fibers containing silver nanoparticles. Macromolecular Research, 2010, 18(3), 215–221. http://dx.doi.org/10.1007/s13233-010-0316-4
  43. AU, Hang Thi, PHAM, Lan Ngoc, VU, Thu Ha Thi, PARK, Jun Seo. Fabrication of an antibacterial non-woven mat of poly(lactic acid)/chitosan blend by electrospinning. Macromolecular Research, 2012, 20(1), 51–58. http://dx.doi.org/10.1007/s13233-012-0010-9
  44. WANG, Hongbo, WEI, Qufu, WANG, Xi, GAO, Weidong, ZHAO, Xiaoyan. Antibacterial properties of PLA nonwoven medical dressings coated with nanostructured silver. Fibers and Polymers, 2008, 9(5), 556–560. http://dx.doi.org/10.1007/s12221-008-0089-y
  45. WANG, Hongbo, WEI, Qufu, GAO, Weidong. Sputter deposition of antibacterial nano-silver on PLA nonwoven medical dressings. AATCC Review, 2009, 9(11), 34–36.
  46. GORJANC, Marija, BUKOŠEK, Vili, GORENŠEK, Marija, MOZETIČ, Miran. CF4 plasma and silver functionalized cotton. Textile Research Journal, 2010, 80(20), 2204–2213. http://dx.doi.org/10.1177/0040517510376268
  47. GORENŠEK, Marija, GORJANC, Marija, BUKOŠEK, Vili, KOVAČ, Janez, PETROVIĆ, Zoran, PUAĆ, Nevena. Functionalization of polyester fabric by Ar/N2 plasma and silver. Textile Research Journal, 2010, 80(16), 1633–1642. http://dx.doi.org/10.1177/0040517510365951
  48. GORENŠEK, Marija, RECELJ, Petra. Reactive dyes and nano-silver on PA6 micro knitted goods. Textile Research Journal, 2009, 79(2), 138–146. http://dx.doi.org/10.1177/0040517508091314
  49. Ingeo™ Biopolymer 6201D Technical Data Sheet [online]. http://www.natureworksllc.com/~/media/Technical_Resources/Technical_Data_Sheets/TechnicalDataSheet_6201D_fiber-melt-spinning_pdf.pdf. Accessed 2 September 2013.
  50. RASAL, Rahul M., BOHANNON, Bradley G., HIRT, Douglas E. Effect of the photoreaction solvent on surface and bulk properties of poly(lactic acid) and poly(hydroxyalkanoate) films. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2007, 85(2), 564–572. http://dx.doi.org/10.1002/jbm.b.30980

 

312 Vpliv dodatka tenzida na adsorpcijo C. I. Acid Red 14 na poliamidno 6-snutkovno pletivo • Kristina Zdovc, Marija Gorjanc in Mateja Kert Izvleček in reference

Izvirni znanstveni članek
Prispelo 09-2013 • Sprejeto 11-2013

Vodilna avtorica:
doc. dr. Mateja Kert
Tel.: +386 1 200 32 34
E-pošta: mateja.kert@ntf.uni-lj.si

 

Izvleček

V raziskavi je proučevan vpliv dodatka površinsko aktivne snovi (tenzida) v barvalno kopel na adsorpcijo anionskega kislega barvila C. I. Acid Red 14 (AR14) na poliamidno pletivo 6 (PA 6). Barvanje je bilo izvedeno do ravnotežja (360 minut) v aparatu launderometer pri štirih različnih temperaturah barvanja, in sicer 40, 50, 60 in 70 °C, in pri vrednosti pH 4. V raziskavi so bili uporabljeni kationski tenzid dodeciltrimetilamonijev bromid (DTAB), anionski tenzid natrijev dodecilsulfat (SDS), neionski tenzid Triton X-100 (TX100) ter mešanici tenzidov DTAB/TX100 in SDS/TX100. Barvanje je bilo izvedeno tako brez prisotnosti tenzidov kot tudi v njihovi prisotnosti. Koncentracija ionskih tenzidov je znašala 1,0 x 10-4 mol/kg in je bila nižja od kritične koncentracije micelov (c. m. c.), koncentracija neionskega tenzida pa je bila višja od c. m. c. in je znašala 5,0 x 10-3 mol/kg. Stopnja izčrpanja barvila AR14 je bila ovrednotena z določitvijo koncentracije barvila AR14 v barvalni kopeli pred barvanjem in ob koncu barvanja z uporabo UV-VIS-spektrofotometra. Obarvanost vzorcev je bila izračunana na podlagi izmerjenih vrednosti refleksije vzorcev z refleksijskim spektrofotometrom. Na podlagi stopnje izčrpanja barvila in vrednosti K/S je bilo ugotovljeno, da na interakcije barvilo–substrat vplivajo interakcije barvilo-tenzid, tenzid-tenzid in tenzid-substrat. Med proučevanimi samostojnimi tenzidi tenzid TX100 najučinkoviteje vpliva na adsorpcijo barvila AR14 na pletivo PA 6, medtem ko tenzid SDS deluje kot blokator, vpliv tenzida DTAB je komaj zaznaven, uporaba mešanice tenzidov pa je najbolj optimalna.

Ključne besede: anionsko barvilo, kationski tenzid, anionski tenzid, neionski tenzid, mešanice tenzidov, barvanje, PA 6, adsorpcija, stopnja izčrpanja barvila

 

Reference

  1. DATYNER, Arved. Surfactants in textile processing. New York; Basel : Marcel Dekker, 1983, 77–107.
  2. Colorants and auxiliaries : organic chemistry and application properties. Volume 2, Auxiliaries. Edited by John Shore. Manchester : Society of Dyers and Colourists, 2002, 642–645.
  3. DATYNER, Arved. Interactions between auxiliaries and dyes in the dyebath, Review of Progress in Coloration and Related Topics, 1993, 23(1), 40–50, doi: 10.1111/j.1478-4408.1993.tb00095.x. http://dx.doi.org/10.1111/j.1478-4408.1993.tb00095.x
  4. Burkinshaw, S. M. Chemical principles of synthetic fibre dyeing. London; Glasgow; Weinheim; New York; Tokyo; Melbourne; Madras : Chapman and Hall, 1995, 77–156. http://dx.doi.org/10.1007/978-94-011-0593-4_2 http://dx.doi.org/10.1007/978-94-011-0593-4
  5. Aspland, J. Richard. Textile dyeing and coloration. Research Triangle Park : American Association of Textile Chemists and Colorists, 1997, 410.
  6. KERT, Mateja, SIMONČIČ, Barbara. Pomen interakcij barvilo-tenzid v barvarstvu. Tekstilec, 2007, 50(7-9), 187–207.
  7. SAVARINO, Piero, PARLATI, Stefania, BUSCANIO, Roberto, PICCININI, Paola, BAROLO, Claudia, MONTONERI, Enzo. Effects of additives on the dyeing of polyamide fibres. Part II: Methyl-β-cyclodextrin. Dyes and Pigments, 2006, 69(1–2), 7–12. http://dx.doi.org/10.1016/j.dyepig.2005.02.003
  8. SAVARINO, Piero, PARLATI, Stefania, BUSCANIO, Roberto, PICCININI, Paola, DEGANI, Iacopo, BARNI, Ermanno. Effects of additives on the dyeing of polyamide fibres. Part I: β-cyclodextrin. Dyes and Pigments, 2004, 60(3), 223–232. http://dx.doi.org/10.1016/S0143-7208(03)00142-6
  9. YEN, P. H. in CHEN, K. M. Preparation and properties of novel low-foaming dyeing auxiliaries. Part 1 – Preparation and properties of ethoxylated hydroxysulphobetaines in nylon dyeing. Journal of the Society of Dyers and Colourists, 1998, 114(5–6), 160–164. http://dx.doi.org/10.1111/j.1478-4408.1998.tb01974.x
  10. SIMONČIČ, Barbara, KERT, Mateja. Vpliv strukture in sestave površinsko aktivnih snovi na interakcije barvilo-tekstilni substrat. Tekstilec, 2002, 45(11–12), 327–333.
  11. SIMONČIČ, Barbara, KERT, Mateja. Influence of the chemical structure of dyes and surfactants on their interactions in binary and ternary mixture. Dyes and pigments, 2008, 76(1), 104–112. http://dx.doi.org/10.1016/j.dyepig.2006.08.012
  12. GHOREISHI, Sayed Mehdi, BEHPOUR, Mohsen, SHABANI-NOOSHABADI, Mehdi. Interaction of Anionic Azo Dye and TTAB – Cationic Surfactant. Journal of the Brazilian Chemical Society, 2009, 20(3), 460–465. http://dx.doi.org/10.1590/S0103-50532009000300008
  13. BIELSKA, Małgorzata, SOBCZYNSKA, Anna, PROCHASKA, Krystyna. Dye-surfactant interaction in aqueous solutions. Dyes and Pigments, 2009, 80(2), 201–205. http://dx.doi.org/10.1016/j.dyepig.2008.05.009
  14. FAZELI, Sara, SOHRABI, Beheshteh, TEHRANI-BAGHA, Ali Reza. The study of Sunset Yellow anionic dye interaction with gemini and conventional cationic surfactants in aqueous solution. Dyes and Pigments, 2012, 95(3), 768–775. http://dx.doi.org/10.1016/j.dyepig.2012.03.022
  15. LEWIS, David M. Dyestuff-fibre interactions. Review of Progress in Coloration and Related Topics, 1998, 28(1), 12–17. http://dx.doi.org/10.1111/j.1478-4408.1998.tb00114.x
  16. SIMONČIČ, Barbara. Teoretične osnove barvanja. 1. izdaja. Ljubljana : Univerza v Ljubljani, Naravoslovnotehniška fakulteta, Oddelek za tekstilstvo, 2009, 120.
  17. NAVARRO, Antonio, CEGARRA, Jose, VALLDEPERAS, Jose, JOCIC, Dragan. Influence of oxyethylenated alkylamines in the dyeing of polyamide 66 fibres. Dyes and Pigments, 2006, 69(12), 40–44. http://dx.doi.org/10.1016/j.dyepig.2005.02.015
  18. Karmakar, S. R., Patel, S. G., Pandaya, N. R., Interaction of non-ionic surfactants with some acid dyes, Indian Journal of Textile Research, 1989, 14, 93–97.
  19. DELANEY, M. J., DATYNER, A. The interactions between acid dyes and non-ionic surfactants and its effect on sorption and diffusion behaviour. II-Sorption of dyes and surfactants on nylon 6.6 fibres from finite baths, Journal of the Society of Dyers and Colourists, 1971, 87(8), 263–268. http://dx.doi.org/10.1111/j.1478-4408.1971.tb03026.x
  20. DATYNER, A., DELANEY, M. J., IIJIMA, T. The interaction between acid dyes and nonionic surfactants and its effect on sorption and diffusion behaviour. Part III: Diffusion of dyes into polyamide 6 films, Textile Research Journal, 1973, 43(1), 48–53. http://dx.doi.org/10.1177/004051757304300107
  21. SIMONČIČ, Barbara, KERT, Mateja. A study of anionic dye-cationic surfactant interactions in mixtures of cationic and nonionic surfactants, Dyes and Pigments, 2002, 54(3), 221–237. http://dx.doi.org/10.1016/S0143-7208(02)00046-3
  22. KERT, Mateja, SIMONČIČ, Barbara. Vpliv strukture neionskega tenzida na interakcije tenzid-tenzid. Tekstilec, 2007, 50(1–3), 35–49.

 

323 Primerjava 3D simulacij tekstilij z oceno uporabe dveh aplikacij in slikovno analizo upodobitev •  Tanja Nuša Kočevar in Helena Gabrijelčič Tomc Izvleček in reference

Izvirni znanstveni članek
Prispelo 03-2013 • Sprejeto 10-2013

Korespondenčna avtorica:
doc. dr. Helena Gabrijelčič Tomc
Tel.: +386 2 200 3278
E-pošta: helena.gabrijelcic@ntf.uni-lj.si

 

Izvleček

Tekstilije so v programih za 3D modeliranje in animiranje obravnavane kot dinamični objekti, saj interagirajo z zunanjimi silami, kot so trk,veter, gravitacija, turbulenca in druge. Različne programske aplikacije rešujejo izzive modeliranja in simuliranja na različne načine. Eden izmed načinov je delitev določenega 3D modela s številnimi zaporednimi koraki na zelo veliko majhnih površin oz. segmentov. S tem model tekstilije pridobi virtualno gibkost in fleksibilnost, ki pod vplivom dinamičnih sil omogoča prikazovanje realističnega drapiranja in drugih oblik obnašanja tekstilije v prostoru. Cilj raziskave je primerjava uporabnosti in učinkovitosti orodij za modeliranje in simuliranje tekstilij dveh aplikacij različnih programskih paketov, in sicer 3ds Max in Blender. Primerjava odprtokodnega in profesionalnega programa, ki nista specializirana CAD programa za tekstilije, a ju v širšem kontekstu 3D računalniške grafike poznavalci uporabljajo za vizualizacijo tekstilij za različne namene (arhitektura, vizualizacija oblačil, avtomobilizem), je potekala z namenom analize uporabnosti (kot elementa uporabniške izkušnje) in vrednotenja končnih upodobitev drapiranja tekstilij. V virtualnem okolju obeh programov so bile simulirane tekstilije z različno surovinsko sestavo in različnimi parametri, ki jih ponujajo podatkovne baze uporabljenih programskih paketov. Upoštevan je bil vpliv sile gravitacije, ki je deloval med prostim padom tekstilije čez izbran objekt: kocko, valj in sfero. Uporabnost aplikacij je bila proučena s številom korakov priprave scene za kolizijski test virtualne tekstilije, številom uporabljenih vrst tekstilnih materialov, številom nastavitev parametrov za določen tekstilni material, ki jih ponujajo podatkovne baze programov, in s časom ter številom slik za simuliranje trka in končnega drapiranja tekstilij. Ocena upodobitev in vrednotenje drapiranja analiziranih materialov sta potekala subjektivno in s slikovno analizo, in sicer z analizo površine in obsega ter njuno korelacijo. Rezultati so numerično in slikovno, tako v primeru uporabnosti aplikacij kot tudi v primeru kakovosti simulacij ter upodobitev, pokazali prednost rešitev simuliranja tekstilij, ki jih ponuja program 3ds Max.

Ključne besede: 3D modeliranje, simulacija tekstilij, uporabnost, trk, slikovna analiza

 

Reference

  1. WEIL, Jerry. The synthesis of Cloth object. Computer Graphics (Proc Siggraph), 1986, 20(4), 49−54. http://dx.doi.org/10.1145/15886.15891.
  2. FEYNMAN, Carl Richard. Modelling the Appearence of Cloth. Master disertation. Massachusetts Institute of Technology, Cambridge, 1986.
  3. TERZOPOULOS, Demetri, PLATT, John, BARR, Alan, FLEISHER Kurt. Elastically deformable models. Computer Graphics, 1987, 21(4). http://dx.doi.org/10.1145/37402.37427.
  4. THALMANN, Nadia Magnenat, THALMANN, Daniel. Cloth animation with self-collision detection. Modelling in Computer Graphics. Kunii T. L. (ur.), Berlin, Springer-Verlag, 1991, 179−187.
  5. DHANDE, Sanjay Govind, RAO P. V. Madhusudhan, MOORE L. Chris. Geometric modelling of draped fabric surfaces. Graphics, design and visualisation, Pros Int Conference on Computer Graphics. Mudur S. P. (ur.), Pattanaik S. N. Bombay (ur.), Jaico Publishing house, 1993, 173−180.
  6. CHEN, Bijian, GOVINDARAJ, Muthu. A physical based model of fabric drape using flexible shell theory, Textile Research Journal, 1995, 65(6), 324−330. http://dx.doi.org/10.1177/004051759506500603.
  7. EBERHARDT, Bernhard, WEBER, Andreas, STRASSER, Wolfgang. A fast flexible particle system model for cloth draping. IEE, Computer Graphic and Application, 1996, 16(5), 51−59, http://dx.doi.org/10.1109/38.536275.
  8. SUL, In Hwan, KANG, Tae Jin. Improvement of drape simulation speed using constrained fabric collision. International Journal of Clothing Science and Technology, 2004, 16(1/2), 43−50. http://dx.doi.org/10.1108/09556220410520342.
  9. BARAFF, David, WITKIN, Andrew. A large steps in cloth simulation. Proceedings of Computer Graphics, Annual Conference Series, 1998, 43−54.
  10. Optitex, 2D and 3D CAD/CAM Fashion Design Software [online] http://www.optitex.com. Accessed 15 January 2013.
  11. Lectra, Fashion PLM, CAD/CAM solution and service. http://www.lectra.com/en/index.html. Accessed 15 July 2013.
  12. Gerber Technology [online] http://www.gerbertechnology.com. Accessed 15 July 2013.
  13. Human Solution Assyst avm [online] http://www.human-solutions.com. Accessed 9 October 2013.
  14. ŠTANC, Barbara, LUKAČ, Tjaša, JEVŠNIK, Simona, RUDOLF Andreja, STJEPANOVIČ, Zoran. Izdelava prototipa tekmovalnega dresa smučarja skakalca. Tesktilec, 2009, 52(7-9), 206−221.
  15. Blender Foundation [online] http://www.blender.org. Accessed 17 January 2013.
  16. Autodesk 3dsMax [online] http://usa.autodesk.com/3ds-max/. Accessed 17 January 2013.
  17. Autodesk Maya. [online] http://usa.autodesk.com/maya/ . Accessed 17 January 2013.
  18. KOČEVAR, Tanja Nuša, GABRIJELČIČ TOMC, Helena. Animiranje in primerjava 3D simulacij tekstilij v programih Blender in 3ds Max = Animation and comparison of 3D textile simulations in Blender and 3ds Max. V: SIMONČIČ, Barbara (ur.), GORJANC, Marija (ur.). 43. simpozij o novostih v tekstilstvu, Tekstilna obzorja, Ljubljana, Tekstilna obzorja : zbornik izvlečkov. Ljubljana: Naravoslovnotehniška fakulteta, Oddelek za tekstilstvo, 2012, 44.
  19. Maxon 3D for the real world, Cinema 4D [online] http://www.maxon.net/. Accessed 9 October 2013.
  20. Newtek Lightwave [online] https://www.lightwave3d.com/. Accessed 9 October 2013.
  21. KLADNIK, Rudolf, Visokošolska Fizika, 1. del, mehanski in toplotni pojavi, Državna založba Slovenije, 1989, 231.
  22. GOLDBERGER, L. Marvin, WATSON, M. Kenneth. Collision Theory. Dover Publications, 2004, 919.
  23. HU, Jinlian. Structure and mechanics of woven fabrics. Boca Raton, Fla. : CRC Press; Cambridge : Woodhead Pub., 2004, 307.
  24. GERŠAK, Jelka. Mehanske in fizikalne lastnosti materialov. Maribor, Fakulteta za strojništvo, Oddelek za tekstilstvo, 2006, 156.
  25. KOBOVC, Dragica. Simulacija obnašanja tkanin in pletiv : diplomsko delo. Maribor, Fakulteta za strojništvo, Oddelek za tekstilstvo, 2010.
  26. HEARLE, John W. S., BACKER, Stanley, GROSBERG, Percy. Structural mechanics of Fibres, Yarn and Fabrics, Volume 1. John Wiley & Sons Inc. 1969, 482, PMid:4179568.
  27. CUSICK, G. E. The dependence of Fabric Drape on bending and Shear Stiffness. Journal of Textile Institute, 1965, 56(11), 596−606. http://dx.doi.org/10.1080/19447026508662319
  28. CUSICK, G. E. The Measurement of Fabric Drape. Journal of Textile Institute, 1968, 56(11), 253−260. http://dx.doi.org/10.1080/00405006808659985
  29. CHU, C. Chauncey, CUMMINGS, L.Clinton, TEIXEIRA, A. Newton. Mechanics of elastic Perfotmance of Textile Materials Part V: A Study of the Factors Affecting the Drape of Fabrics – The Development of a Drapemeter. Textile Research Journal, 1950, 20, 539−548. http://dx.doi.org/10.1177/004051755002000802
  30. KERLOW, Isaac. The art of 3D : computer animation and effects. Wiley, 2009, 499.
  31. PARENT, Rick. Computer animation, Algorithms and Techniques. Morgan Kaufmann, 2012, 542.
  32. BREEN, E. David, HOUSE, H. Donald, WOZNY, J. Michael. Predicting the drape of woven cloth using interacting particles. SIGGRAPH ’94 Conference Proceedings, 1994, Orlando, FL, USA, 365−72. http://dx.doi.org/10.1145/192161.192259
  33. LOJEN-ŽUNIČ, Darja, JEVŠNIK, Simona. Some Aspect of Fabric Drape. Fibres and Textiles in Esatern Europe, 2007, 15(4), 39−45.
  34. MURDOCK, L. Kelly. 3ds Max 2012 Bible. 1 ed. Wiley, 2011, 1250.
  35. CHOPINE, Ami. 3D Art Essentials : the Fundamentals of 3D Modeling, Texturing and Animation. 2011, 274.
  36. BIRN, Jeremy. Digital Lightning and Rendering. 2. ed. New Riders, 2006, 432.
  37. JEONG, Y. J. A Study of Fabric-drape Behaviour with Image Analysis Part I: Measurement, Characterisation, and Instability. Journal of the Textile Institute, 1998, 89(1), 59−69. http://dx.doi.org/10.1080/00405009808658597
  38. JEONG, Y. J. , PHILLIPS, D. G. A Study of Fabric-drape Behaviour with Image Analysis. Part II: The Effects of Fabric Structure and Mechanical Properties on Fabric Drape. Journal of the Textile Institute, 1998, 89(1), 70−79. http://dx.doi.org/10.1080/00405009808658598
  39. PLUMLEE, Traci May, EISCHEN, Jeffrey, KENKARE, Narahari, PANDURANGAN, Pradeep. Evaluating 3D shape simulations : Method and Metrics [online] http://www.ncsu.edu/project/ntcprojects/projects/F02-S08/Paper_Indedec_Sept03.pdf. Accessed 20 January 2013.
  40. BEHERA, B. K., PATTANAYAK, Ajit Kumar. Measurement and modeling of drape using digital image processing. Indian Journal of Fibre & Textile Research, 2008, 33, 230−238.
  41. KENKARE, Narahari, PLUMLEE, Traci May. Fabric Drape Measurements: a modified Method Using Digital Image Processing. Journal of Textile and Apparel, Technology and Measurement, 2005, 4(3). [online] http://faculty.mu.edu.sa/public/uploads/1345907225.1717Plumlee_full_148_05.pdf. Accessed 25 January 2013.
  42. HAMDI, Thuraya, GHITH, Adel, FAYALA, Faten. Study of drape parameter using image analysis. International Journal of Engineering Science and Technology, 2013, 5(7), 1456− 1464.
  43. ImageJ [online] http://rsbweb.nih.gov/ij/. Accessed 23 January 2013.
  44. RUSS, C. John. The Image Processing Handbook, 6th ed. CRC Press 2011, 885.
  45. MOGGRIDGE, Bill. Designing Interactions. The MIT Press, 1.ed, 2007, 766.
  46. VIDMAR, Žan. Primerjava različnih upodobljevalnikov v programu Autodesk Maya : diplomsko delo. Naravoslovnotehniška fakulteta, Oddelek za tekstilstvo, 2013, 49.

 

335 Poroznost večplastnih bombažnih tkanin in njen vpliv na prepustnostne lastnosti • Klara Kostajnšek in Krste Dimitrovski Izvleček in reference

Prispelo 01-2013 • Sprejeto 11-2013
Izvirni znanstveni članek

Korespondenčni avtor:
Klara Kostajnšek, univ. dipl. inž
Tel.: +386 1 200 32 14
E-pošta: klara.kostajnsek@ntf.uni-lj.si 

 

Izvleček

Bombažne tkanine imajo poleg mehkega otipa in dobre vpojnosti tudi dobro toplotno prevodnost, prepustnost zraka in dihalnost. Z večanjem odprte površine enoplastnih tkanin se praviloma povečujejo tudi njihova zračna prepustnost, prepustnost vodne pare in toplotna prevodnost, vendar se slabša zaščita pred UV-žarki, ki je pomembna zlasti za poletna oblačila. Namen raziskave je bil ugotoviti vpliv konstrukcije večplastnih bombažnih tkanin na lastnosti, povezane s poroznostjo: toplotno upornost (RcT), upor prehodu vodne pare (ReT), prepustnost za UV-žarke (UZF) in zračno prepustnost (ZP).V ta namen so bile iz bele, modre in črno obarvane preje finoče 8×2 tex stkane dvovotkovne, dvojne in enoplastne bombažne tkanine v gostoti 40 niti/cm v smeri osnove in 60 niti v smeri votka, pri čemer je bila upoštevana tudi barvna razporeditev preje v tkaninah. Raziskava je pokazala, da imajo najoptimalnejšo konstrukcijo večslojne dvovotkovne in dvojne tkanine. Za raziskovane tkanine obstaja pozitivna korelacija med poroznostjo tkanin in njihovo zračno prepustnostjo oziroma faktorjem UZF ter negativna korelacija med poroznostjo tkanin in njihovo toplotno prevodnostjo oziroma prepustnostjo vodne pare. Korelacija med izračunanim številom por posameznih vzorcev kot pomembnim dejavnikom poroznosti in raziskanimi prepustnostnimi lastnostmi (toplotno upornostjo, uporom prehodu vodne pare, prepustnostjo UV-žarkov in zračno prepustnostjo) je bila večja od korelacije med samo poroznostjo vzorcev in omenjenimi prepustnostnimi lastnosti.

Ključne besede: večplastne tkanine, konstrukcija tekstilij, zračna prepustnost, prepustnost vodne pare, toplotni upor, UV-prepustnost

 

Reference

  1. POSTLE, Ron. Screening application of textile materials: an Australian perspective. V 4th International Textile, Clothing & Design conference ITC&DC: book of proceedings. Edited by Z. Dragčević. Zagreb : Faculty of Textile Technology, University of Zagreb, 2008, 1108−1111.
  2. ZAMPETAKIS, Aristotelis, KATSAROS, Giorgos. Optimization of wear comfort parameters for summer cloths. V 8th AUTEX conference : proceedings. Biella, Italy, 2008.
  3. ŠAJN GORJANC, Dunja, DIMITROVSKI, Krste, BIZJAK, Matejka. Thermal and water vapor resistance of the elastic and conventional cotton fabrics. Textıle Research Journal, 2012, 82(14), 1498−1506. http://dx.doi.org/10.1177/0040517512445337
  4. HES, Lubos. Heat, moisture and air transfer properties of selected woven fabrics in wet state. V Proceedings of TBIS 2008 Textile Symposium. Hong Kong, China, 2008, 968−976.
  5. DIMITROVSKI, Krste, KOSTAJNŠEK, Kostanjšek. Evaluation of permeability properties of lightweight cotton fabrics with different construction. V 9th AUTEX conference : proceedings. Izmir, 2009, 69−74.
  6. WONG, Wai-yin, KWOK-CHEONG LAM, Jimmy, KAN, Chi-wai, POSTLE, Ron. Influence of knitted fabric construction on the ultraviolet protection factor of greige and bleached cotton fabrics. Textıle Research Journal, 2013, 83(7), 683-699. http://dx.doi.org/10.1177/0040517512467078
  7. Textiles – Physiological effects – measurement of thermal and watervapour resistance under steady-state conditions (sweating guarded-hotplate test). ISO 11092:1993.
  8. HES, Lubos. Non-destructive of comfort parameters during marketing of functional garments and clothing. Indian Journal of Fibre & Textile Research, 2008, 33, 239-245.
  9. Tekstilije – Zaščitne lastnosti pred sončnimi ultravijoličnimi žarki – 1. del : Metoda preskušanja za oblačilne tekstilije. SIST EN 13758-1:2002.
  10. DOBNIK DUBROVSKI, Polona. Volume porosity of woven fabrics. Textıle Research Journal, 2000, 70(10), 915−919. http://dx.doi.org/10.1177/004051750007001011.
  11. DOBNIK DUBROVSKI, Polona, GOLOB, Darko. Effects of woven fabric construction and color on ultraviolet protection. Textıle Research Journal, 2009, 79(4), 351−359. http://dx.doi.org/10.1177/0040517508090490.
  12. URBAS, Raša, KOSTAJNŠEK, Klara, DIMITROVSKI, Krste. Impact of structure and yarn color on UV properties and air permeability of multilayer cotton woven fabrics. Textıle Research Journal, 2011, 81(18), 1916−1925. http://dx.doi.org/10.1177/0040517511413326.
  13. Arahne [online] <http://www.arahne.si/>. April 2013.

 

345 Vpliv segrevanja šivalne igle med procesom šivanja na natezne lastnosti sukanca • Adnan Mazari in Antonin Havelka Izvleček in reference

Predhodna objava
Prispelo
11-2013 • Sprejeto 12-2013

Korespondenčni avtor:
Adnan Mazari
E-pošta: adnanmazari86@gmail.com

 

Izvleček

V članku je predstavljena raziskava nateznih lastnosti sukanca, kot so trdnost, pretržni raztezek ter začetni modul dveh v industriji pogosto uporabljenih poliestrskih sukancev iz oplaščenene preje, in sicer v štirih fazah šivanja. Na začetku smo izmerili temperaturo igle pri različnih hitrostih, in sicer od 1000 do 4700 vrtljajev na minuto na industrijskem šivalnem stroju s pomočjo metode vstavljenega termočlena. Natezne lastnosti sukanca smo nato primerjali pri različnih vnaprej določenih delih šivalne niti med samim procesom šivanja. Izsledki raziskave so pokazali, da ima interakcija med segrevanjem igle in sukancem na navitku velik vpliv na natezno trdnost sukanca, medtem ko je natezna trdnost najmanjša na točki, ko se stroj ustavi in je sukanec v neposrednem stiku z vročo iglo. Trdnost, pretržni raztezek in začetni modul se znatno zmanjšajo pri večji hitrosti stroja, ko se poviša tudi temperatura igle. Pri hitrosti 4000 vrtljajev na minuto izgubi sukanec 50 % trdnosti, saj se temperatura igle povzpne na skoraj 250 °C. Vpliv je večji pri sukancih z višjo linearno gostoto.

Ključne besede: šivalna igla, trdnost sukanca, segrevanje igle, metoda s termočlenom

 

Reference

  1. KUMAR MIDHA, Vinay, KOTHARI, V. K., CHATOPADHYAY, R., MUKHOPADHYAY, A. Effect of high-speed sewing on the tensile properties of sewing threads at different stages of sewing. International Journal of Clothing Science and Technology, 2009, 21(4), 217–238. http://dx.doi.org/10.1108/09556220910959981
  2. UKPONMWAN, J. O., MUKHOPADHYAY, A., and CHATERJEE, K. N. Sewing threads. Textile Progress, 2000, 30(3/4), 1–91. http://dx.doi.org/10.1080/00405160008688888Ž
  3. WINKLER, G. Modern sewing threads. V 4th International seminar on developments in production and application. Shirley Institute, Manchester, 1971, 1–21.
  4. CROW, R. H., CHAMBERLAIN, N. H. The Performance of sewing threads in industrial sewing machines. Clothing Institute Technological Report. London, 1969, No. 21.
  5. SUNDARESAN, G., HARI, P. K., SALHOTRA, K. R. Strength reduction in sewing threads during high speed sewing in an industrial lockstitch machine: Part I: Mechanism of thread strength reduction. International Journal of Clothing Science and Technology, 1997, 9(5), 334–335. http://dx.doi.org/10.1108/09556229710185460
  6. SUNDARESAN, G., SALHOTRA K. R., HARI P. K. Strength reduction in sewing threads during high speed sewing in industrial lockstitch machine, Part II: Effect of thread and fabric properties. International Journal of Clothing Science and Technology, 1998, 10(1), 64–79. http://dx.doi.org/10.1108/09556229810205303
  7. GERŠAK, Jelka, KNEZ, Blaž. Reduction in thread strength as a cause of loading in the sewing process. International Journal of Clothing Science and Technology, 1991, 3(4), 6–12. http://dx.doi.org/10.1108/eb002978
  8. RUDOLF, Andreja, GERŠAK, Jelka. Influence of twist on alterations in fibers’ mechanical properties. Textile Research Journal, 2006, 76(2), 134–144. http://dx.doi.org/10.1177/0040517506057424
  9. GERŠAK, Jelka. Rheological properties of threads – their influence on dynamic loads in the sewing process. International Journal of Clothing Science and Technology, 1995, 7(2/3), 71–80. http://dx.doi.org/10.1108/09556229510087182
  10. MIDHA, Vijay Kothari, MUKHOPADHYAY, A., CHATOPADHYAY, R., KOTHARI, V.K. Studies on the changes in tensile properties of sewing thread at different sewing stages. Textile Research Journal, 2009, 79(13), 1155-1167. http://dx.doi.org/10.1177/0040517508101456
  11. KAUR, R. Seam strength prediction for workwear fabrics : M. Tech Thesis. National Institute of Technology, Jalandhar, 2007.
  12. MAZARI, Adnan, HAVELKA, Antonin, MAZARI, Funda Buyuk. Needle eye temperature measurement at different speeds of sewing. V International Conference on Engineering & Technology. German University in Cairo, New Cairo City, October, 2012. http://dx.doi.org/10.1109/ICEngTechnol.2012.6396164
  13. FERREIRA, F. B. N., HARLOCK, S. C., GROSBERG, P. A study of thread tensions on lockstitch sewing machine, Part-I. International Journal of Clothing Science and Technology, 1994, 6(1), 14–19. http://dx.doi.org/10.1108/09556229410054468
  14. FERRIERA, F. B. N., HARLOCK, S. C., GROSBERG, P. A study of thread tensions on lockstitch sewing machine, Part-II. International Journal of Clothing Science and Technology, 1994, 6(5), 26–29. http://dx.doi.org/10.1108/09556229410074583
  15. KAMATA, Yoshinobu, KINOSHITA, Rikuhiro, ISHIKAWA, Shonosuke, FUJISAKI, Kiyoshi. Disengagement of needle thread from rotating hook, effects of its timing on tightening tension, industrial single needle lockstitch sewing machine. Journal of The Textile Machinery Society of Japan, 1984, 30(2), 40–49. http://dx.doi.org/10.4188/jte1955.30.40
  16. ŽUNIČ LOJEN, Darja, GERŠAK, Jelka. Thread loading in different positions on the sewing machine. Textile Research Journal, 2005, 75(6), 498–506. http://dx.doi.org/10.1177/0040517505053870
  17. MAZARI, Adnan, HAVELKA, Antonin. Tensile properties of sewing thread and sewing needle temperature at different speed of sewing machine. Advanced Materials Research, 2013, 627, 456−460. http://dx.doi.org/10.4028/www.scientific.net/AMR.627.456
  18. HES, Lubos. Method for measuring needle temperature by thermocouple, Czech Republic Patent No.255597. [online] http://spisy.upv.cz/Patents/FullDocuments/255/255597.pdf. Accessed 5 December 2013.

 

 

PRILOGA

353 Praktično usposabljanje študentov

355 Diplomska, magistrska in doktorska dela v študijskem letu 2012/13

359 Izvlečki doktorskih del v letu 2013

363 Izvlečki magistrskih del v letu 2013

 

STROKOVNI DEL

373 Svilanit – od obrtne delavnice z žakarsko tkalnico do mednarodnega podjetja (Aktualno doma)

377 Priznanje »zaslužni profesor Univerze v Ljubljani« red. prof. dr. Viliju Bukošku (Aktualno doma)

379 Nagrade in priznanja študentom Oddelka za tekstilstvo NTF v letu 2013 (Aktualno doma)

381 Druga mednarodna zimska šola CEEPUS – DESIGN WEEK 2013 (Mednarodni projekt)

385 Modna revija Fakultete za dizajn v okviru projekta Čokoljana (Oblikovanje tekstilij in oblačil)

386 Peter Movrin, študent Oblikovanja tekstilij in oblačil (Oblikovanje tekstilij in oblačil)

387 Beneški bienale sodobne umetnosti (Oblikovanje)

389 Koledar prireditev za leto 2014